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THE USE OF ~HEBYSHEV POLYNOMrALS TO CONSTRUCT PERTURBED-MOTION TRAJECTORIES 

IN NON-LINEAR MECHANICS* 

1.1. KOSENKO 

Approximate solutions are constructed for a system of differential 
equations for perturbed motion over long time intervals. A Hilbert 
space projective method is used with a specially chosen metric to ensure 
uniform convergence. Analytic properties of Chebyshev polynomials 
together with simple operations enable one to derive a 
finite-dimensional system of projective algebraic equations: 

1. Transformation of the problem. In the mechanics of perturbed motion one often has to 
solve a system of equations having the standard form 

x'=ELX(x, t, nt) (1.1) 

in the interval TV IO, T] with initial conditions x (0) = 0. It is assumed that xEBCR*. 
The domain B corresponds to the domain of convergence of a power series for the vector func- 
tion X in the vector variable x. The function X is quasiperiodic in the argument t and can 
be represented in the form 

Xfx,t,p)== 8 X~(x,p)exp (i (~O,k)t) 
kBZm 

where 2 is a set of integers. The vector coefficients are in turn represented in the form of 
multiple power series in the variables x1, . . .,x,. We also assume that the vector function X 
is real-analytic in its arguments, including the small parameter n. 

The use of the initial condition x(O) = 0 does not restrict the generality of the 
problem, because it can always be ensured by an appropriate change of coordinates. 

It is assumed that the solution at a time T does not deviate too far from the origin of 
coordinates. In real calculations both the Fourier series and the power series are truncated, 
and the right-hand side nX is represented by the sum of a finite, though possibly large number 
of terms. The small parameter u plays an important role. In particular, such a situation is 
found in the neighbourhood of an equilibrium position of a Hamiltonian system. 

In this paper we propose the use of Chebyshev polynomials to construct solutions of 
problem (1.1). It is known that these polynomials enable one to obtain rapid convergence of 
uniform approximations to discontinuous functions 111. We shall obtain uniform convergence 
as a consequence of convergence in a more complicated functional metric, 

Consider Chebyshev polynomials of the first kind T, (r) = co.3 (n arceos z) (n = 0, 1, . . .). 
The functions T,(T) behave in an oscillatory manner in the interval I-i, 'il. However, the 
oscillations are concentrated towards the points z = -1, 1, while at the same time the right- 
hand sides of (1.1) oscillate quasiperiodically. In order to represent oscillatory motion in 
the interval LO, Tl. with the help of Chebyshev polynomials in the interval [-1,11 it is 
necessary to perform a transformation of the independent coordinate t. So we put T = cos (nT_rl). 

If TV IO, 2’1, then TE f-l, 11 and the relation is monotonic. The differentiation 
operator is expressed by the formula 

Using this we replace problem (1.1) with the problem 

dxidr = YY (x, '5, Jo), x (1) = 0, z E I-1, 21, v = pT/x 

where the new right-hand side has the form 

Y(x,T,P) = -((1 -+)-'/*X(X, Tn-‘arccos z,~) 

(1.2) 
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It was remarked earlier that the vector function Xcan be represented in the form of a 
Poisson series 

X(X,T, P) = 2 2 Xlk(IL)X'exp(i<oo,k)~) 
L-S-? ,& 

(1.3) 

where 1 = (L1. . ..,I,,) is a multi-index, and the expression for the power monomial is xl = ($)'L 

($)lz . (2)‘n. The symbol Z, denotes the set of non-negative integers. 

In the expression for the function Y(x,z,p) the quasiperiodic harmonics will be ex- 

pressed by the functions eos (qk arccos 7) and sin (qk arccosr), where Qr = Tn-' <ma, k). From now on 

we shall use a right-hand side for (1.2) of the form 

(1.4) 

B,r(~)(1-~2)-'/,sin(qk arcccs~)] 

Aik(r-c) = ReXn(n), BIk(p) = - IIn &k(p), XI, -Jr (p) = x:k (p) 

(where the star denotes complex conjugation). 

2. Description of the projective method. We will assume that the solution of problem 
(1.2) is defined for all 7~ [-I,11 with x (7)~ Q, where Q is the domain of convergence 

of the series for X in the variable x E QC R”. It is known that problem (1.2) is equivalent 
to the equation 

x = Z(x,II),[Z(x,uJ](7) = ~VY[X@),a,I"]d" (2.1) 

In order to construct a projective method for solving Eq.(2.1) it is necessary to specify 
an approximate functional space and to determine a system of projection operators in this 
space onto its finite-dimensional subspaces. 

It is known that the Chebyshev polynomials of the first and second kinds form a complete 
orthogonal family of functions in the interval L--1, 11 endowed with measures dpL, = (1 - 

?-‘ladT and dnLZ = (1 - ?)ll*dT respectively. 
Consider a Hilbert space of Sobolev class H'([-I, 11, P1,PLz;Rn) (henceforth simply HI) 

with scalar product 

~2 (r))dl*r + \ (xr'(+ x,'(z))% 
-1 

where (,) is the scalar product on R" and the prime denotes differentiation with respect 
to z. One can define HI as the completion of the set of continuously differentiable func- 
tions in L--1,11 in the norm 

II x III = ( j 11 X W II% + { II X' @) II2 dpz)"' 
-1 -1 

We will use the symbol CA([-I, 11, R") (from now on simply CA) to denote the space of 
absolutely continuous functions in the interval [--1.11. One can introduce a Banach structures 
on CA using the norm defined by the formula 

II x II.4 = II x (1) II + Vu (L--1, 11, x) 

Using well-known methods /2/ and properties of the weighting functions p1 (?) = (1 - ?-I/:, 
andp,(T) = (1 -TV)'/. one can prove that the space H’ is embedded in CA. This means that con- 
vergence in the metric of H’ reduces to convergence in the metric of CA, and in particular, 
to uniform convergence. 

We will restrict the space H’ to the subspace H,’ = {x E H’ : x (1) = 0). It follows 
from the form of the right-hand side of Eq.(2.1) that it will always belong to HO1 if the 
function Y is sufficiently smooth and summable. Finally, as a domain of definition for the 
operator we define the set 

s2 = {x E H,‘: x (4 E Q VT E [--I, U} 

One can prove that (;2 is a domain in HO’. 
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In order to construct a Galerkin scheme it is necessary to define a system of finite- 
dimensional subspaces El, CH,‘(k = 0, 4, . ..) that exhaust the space H,'. To do this we will 
first construct a basis for the space H'. 

Suppose{~*~~~is an orthonormal basis for the spaceH1(I--1,11, &. pn;R) (from now onH").Then 

itis easy to verify thatthe system ofvector functions (ejxk} (j = 1, . . . . n; k = O,l, . ..) is an 
orthonormal basis in H’. Here the {el}F1 are an orthonormal basis in R". 

The problem of constructing a basis in H’ reduces to constructing a basis of scalar 
functions in H”. If a function UE H”, then we automatically have UE&([---I, ll,pl,) and 
24' E 8% ([--1, II, &,). It is known that in these spaces one can construct the orthonormal bases 

riFJL and (g&L respectively, with f,, = n"i~To, X = (2/n~t~T~ and g, = (2~~~'~~~~ (k =I, 2, . . .). 

It is well-known that for k>O the relation T,‘(x) = kuk_1(%} holds for Chebyshev poly- 
nomials of the first and second kinds. Hence fk’ (T) = kg, (~)(k> 0) and fo' (T) = 0. In the 
metric of H” the functions {fk}& form an orthogonal system. If a normalization is per- 
formed then the system of functions {xk)EO such that 

x0 (T) = nt-“eTO (z), xh- (x) = {2/h (1 + k2)l}“~T1, (s) (k > 0) 

is orthonormal in H". 
It turns out that the system {?&)&I is complete in H", i.e. it is basis. From this 

it follows that if we know the expansion of the derivative u'(2) of the function u(t) in the 
space H” with respect to the basis {gr)r=f=l 

u’ (2) = k$J vkk?k CT) 

then one can immediately write down the expansion 

u(z) = %i"%Ik W 

having put uk = vklk for k> 0. The coefficient ug is found from the condition u(l)= 0: 

We will now define the projection operators PK(k = O,l,...) in H,‘. To do this we 
represent them in the form Ph. = PPw’, where Ph.‘ is the orthogonal projection operator in 
the space H1 onto the finite dimensional subspace formed by the span of the first n (k + 1) 
basis vectors e,xo, e.&. . ., e&. After projection Pk’H,’ can leave the space H,‘. There- 
fore, in order to obtain a result in H,‘, it is necessary to project the function P,‘X 
down to H,‘, no longer orthogonally,to H,‘, but along the linear span of the vectors (e,~.~,e,&~ 
. . ., e,&,} so that (PP,'x)(l) = 0. The operator P is given by the formula 

Px = x - x (l)n'& (x E H’) 

Because the space Pk’H1 exhausts all H’, the spaces El, = PM’H’ n Ho1 exhaust all H,'. 
One can verify that E, = Ph.HoL = PkH’. The operators P and Ph.‘ are bounded. The Galerkin 
equations have the form 

Xk = P$ (xr, 11) (xr E &Ho’, k > 0) (2.2) 

Further analysis is similar to that performed in f3/, using some results from 141. First 
we verify the continuous differentiability of the operator z in G. A sufficient condition 
for this is of the form YE&([-I.~I. p,;@(Q)), or in more detail 

II y llB1 < + 02 (2.3) 

If the function X is analytic in the domain of definition, then condition (2.3) holds 
uniformly for all initial conditions in some smaller domain, and the quantity &Ylk' is of 
order unity. 

It follows from the boundedness of the linear operator Pk that the operator PkX is 
continuously differentiable. Furthermore, using the inequality 

I[ Zll< 2". (1 + .a)"2 (1 YY $1 

we establish the continuous invertibility of the operator r-X’@, p)(x~R). This, of course, 
occurs if lJZ_ (x, 10/l< 1, or 
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(PTM II y II*’ < Ml + x2)1’/* (2.4) 

From this we conclude that the length of the time interval over which convergence of the 
approximate to the exact solution is preserved must satisfy the condition T< $-L-l where 
c = 0 (1) = n [Z (1 + nz)l-"' (11 Y 11 &-‘. For example, one can put Ir = c (Z/l)-1. 

By analogy with the results of /3/, we obtain the assertion. 

Theorem. Eq.(2.1) has a unique solution x E I?,". Furthermore, when condition (2.4) is 
satisfied, there exist an integer N and a real a>0 such that for any k>N Eq.(2.2) 
has a unique solution xX in the sphere II Y - x II’ < 8 I and the convergence estimate 

]] xh_ - x ]]' < ]I x - &x j]r t- ]I xk - P&x ]I1 --t 0 (k-m) 

holds together with the two-sided estimate 

Cl II PtJ (4 - PkZ (Pt?) II1 < II Xk - PkX II1 < CP II PkZ (4 - PkZ (Pk”) Ill 
for some c,,c,> 0. 

This theorem guarantees the existence of Galerkin approximations and their uniform con- 
vergence to the exact solution. The solution of the finite-dimensional Eq.(2.2) can be found 
by an iterative method if the condition I] P,Z' (x)]]<l holds. Because [I Ph. ]I < 2'12 (1 + 2n)‘$ 
the condition for the convergence of the iterative process takes the form 

2 i(l + 2n)(l + ny% /I Y jjz* < 1 (2.5) 

As an initial approximation one 
solution of the unperturbed problem. 

can take the function xh. = 0, which corresponds to the 

3. Anatytic techniques. We will now consider the practical implementation of this sol- 
ution method for Eq.(2.2). Suppose that k is sufficiently large and that the vector function 
Y (x9 z, P) has the form (1.4). The properties of Chebyshev polynomials give us the hope 
that k will not be too large. 

In real calculations it is necessary to limit the number of terms in the expansion (1.4), 
i.e. the multi-index II k II < K (II k II = max I b I (i = 1, . . ., 41, which corresponds to taking 
account of a finite (although perhaps large) number of harmonics in the Fourier series of the 
vector function X(x. t* t+ In turn the power series expansions of the coefficients of this 
series also have to be limited to a finite number of terms, i;e. the multi-index III]]< L(](l]] = 
max ] Zi I (i = 1, . . ., n)), where the quantity L may depend on the multi-index k. One usually 
takes into account those terms from series (1.4) which have less than a specified order of 
smallness in the parameter W. Thus instead of the function Y (x,r,p) we shall consider 

y* (X9 T’Y IL) = - ,,k;,,,,,;r. x1 [h (!J) (1 - “)-I” COS (qk arCCOS 7) + 

RTk@)<l -?-'/*sin (qk arccos T)] 

(3.1) 

Our aim is to find an expansion of the function Y* in terms of Chebyshev polynomials of 
the second kind, using a representation of the vector x(z) in the form of a sum of the first 
k Chebyshev polynomials of the first kind. Such a representation of x(z) corresponds to 
the expansion of Y*(x(z), 7, u) in the space Lz (l-1, I], p2; R") with respect to the basis 

After this we automatically obtain the expansion of the primitive of YC (x @), 7, 
in Chebyshev polynomials of the first kind, which corresponds to its expansion in the 

space L, (I--1, 11, ~1; W’) with respect to the basis {eifj}if::f:,;, or in the space H' with 

respect to the basis 

We will give formulae necessary for achieving this aim. The first is the expansion 

Formulae for computing the coefficients 

c,=2_ v+oll +c-l)‘cosqnl 
II 

s = z (I + 1) (-l)'sin 43-c 
(z+l)'.-qq" ' 1 n (~+w--q' (3.2). 

cover the case of integer parameter q, which in the particular case q = 0 indicates the 
resonance of the corresponding harmonics in (1.31, and in these cases we have the simpler 
formulae 
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4 21 -c 1 Gl =y 
(21,_l)P_qqB’ 

c2(+1 = 0 (1 =- 0, 1, . .: ‘, 5. I‘1E Z) 

c 0, ” * 21 
21 = cz1+1 = 

f 2 
y (21 $ 2)s - @a (l-0,1,...; (,- 'r -+- 1; i,CZ) 

&.=I, s,=o (Z= O,l,...; Z#r; J.EZJ 

which are obtained from (3.2) by taking the limits q--t "r. 4+2r+1 and 4-+'-:I, 
respectively. 

Assuming that xh- E Eh. = PI;Hol we obtain the representation 

The vector xkl can be represented in the form of a column of its coordinates xt;! = (XI;il, 
581z, . . .( %lT. Hence taking into account the condition xh (1) = 0 there should be kn unknown 

scalar quantities in the Galerkin Eq.(2.2). In the coordinate representation 

Because the power multiplier in (3.1) has the form xl : (z')'n (X2)'" . . (zyn, one uses 

the well-known expansion of each individual factor in terms of Chebyshev polynomials of the 
first kind to find a similar representation for the entire product. To do this we use the 

well-known identity 

T?n (T) T,, (T) = 2-l (T+,, (T) i- T,,,+,, (T)) (m, n t= Z) (3.3) 

Using (3.3) one can obtain the expansion of the entire monomial x1 in terms of Chebyshev 
polynomials of the first kind. Finally, in order to expand all the terms of (3.1) in terms 
of Chebyshev polynomials of the second kind we must use the identity 

u, (T) T, (t) = 2-1 (Urn-,, (T) i- urn+, (T)) (m, n E Z) 

Finally, after all the substitutions and multiplications, we bring together similar terms 
in (3.1) and neglect all terms which contain U,(T) with Z> k- 1. This also enables us to 

exclude unnecessary terms at earlier stages of the computation, during the multiplications. 

Denoting the truncation of a series by square brackets, we obtain 

The vector coefficient y1 depends polynomially on the unknown quantities zh.? (1 = 1, . . ., 
k; r = 1, . . ., n). The initial condition z+(l) = 0 ensures the relation 

q’(l):= - g&T1 (1) = - i; Zpkl (r = 1, . . ., IL) 
k-1 

which should also be used in deriving expansion (3.4). The truncation operation on a 

Chebyshev series corresponds to the action of the orthogonal projection operator Pk’ (in the 
space of derivatives L,(t--1, il,pz;R”)). Computing the primitive and applying the projection 
operator PI, we have 

[P,Z (516, p)] (T) = 5 y [Y* [z (a), a> Clllk-Ida = 

(- i vL-%,;T, @I + ,i vl-lYr-lT I (.c) 
I=1 I=1 

We obtain as a result a system of kn algebraic equations, corresponding to the functional 
Eq.(2.2): 

ZkIF = Yz-'y;_, (lh. 1, . . ., zh.kr p) (r = 1, . ., n; I = 1, ., k) 

This system can be solved by iteration. 
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RECURRENT ESTIMATION AND IDENTIFICATION OF THE PARAMETERS 

IN NON-LINEAR DETERMINISTIC SYSTEMS* 

G.N. MIL'SHTEIN and O.E. SOLOVtYBVA 

Estimation of the phase states and parameters of non-linear 
deterministic systems of differential equations is reduced to the 
determination of initial data which minimize a certain functional which 
depends on observations and prior information. Equations are derived 
for an optimum non-linear filter whose realization demands repeated 
integration of auxiliarysystems of differential equations. A modified, 
simpler filter, which is nearly optimum in many quite typical 
situations, is constructed. Consideration is given to the problem of 
estimation based on partly-known initial data, a special case of which 
is identifying the parameters of a system whose phase states are known 
at the initial time. In the linear case, if there is no a priori 
information, the results obtained here represent a deterministic version 
of Kalman filtering. The most constructive results in estimation have 
been obtained fox linear systems (for general approaches see /l/, for 
recurrent filtration given known a priori information of a statistical 
nature about the initial data and noise in the object and in the 
observations, see /2/, for a deterministic version of recurrent 
estimation along game-theoretic lines, assuming known restrictions on 
noise, see /3/, and for a deterministic version of Kalman filtering see 
/4, 511. 

1. Statement of the probkm. We shall consider questions relating to the estimation 
of non-linear systems of ordinary differential equations 

X' = j (s, X), s > t, (i,j) 

with observations 

Y (s) 2 rp (s, X (s)), s > t, (1.2) 

The prime denotes differentiation with respect to s,X,y are column vectors with n and 
m components, respectively, the approximate equality in (1.2) indicates that the observations 
involve an unknown degree of noise. 

The identification of a parameter A (where A is an Z-vector) in the system 

X' = j&X, A) (1.3) 

given observations (1.2) and taking into account the relations 

K=O (1.4) 
obviously reduces to estimating the phase variables in system (1.31, (1.4) given observations 
(1.2) (the function 'p in (1.2) may then depend on the parameter A: cp = 'p (s, X (s), A)). 
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